

NT7086 80 CH SEGMENT / COMMON DRIVER FOR DOT MATRIX LCD

Copyright: NEOTEC (C) 2002 http://www.neotec.com.tw

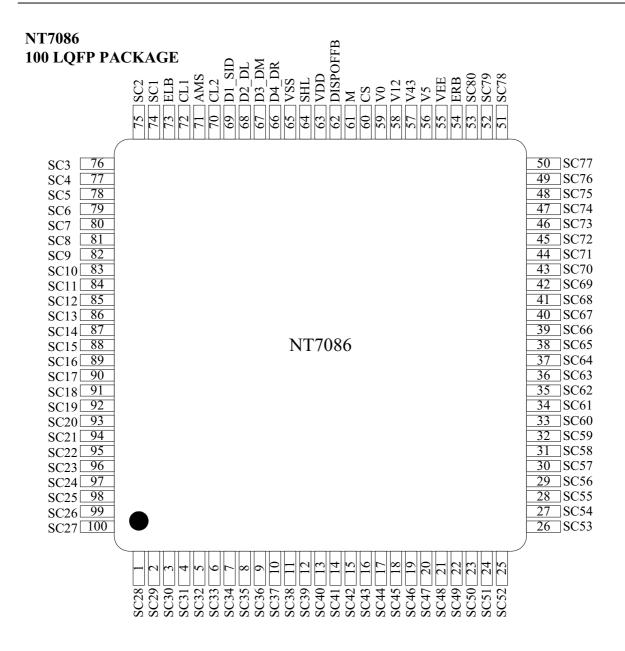
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of NEOTEC

INTRODUCTION

The NT7086 is a LCD driver LSI that is fabricated by low power CMOS high voltage process technology.

In segment drive mode, it can be interfaced in 1-bit serial or 4-bit parallel method by the controller.

In common drive mode, dual type mode is applicable. And in segment mode application, the power down function reduces power consumption.


FEATURES

- Power supply voltage:+5 V±10%, + 3V±10%
- Supply voltage for display: 6 to 28 V $(V_{DD}-V_{EE})$
- 4-bit parallel/1-bit serial data processing (in segment mode)...
- Single mode operation / dual mode operation (in common mode).
- Power down function (in segment mode).
- Applicable LCD duty: 1/64 ~ 1/256
- Interface

DRIVERS					
COM(cascade)	SEG(cascade)				
NT7086	NT7086				

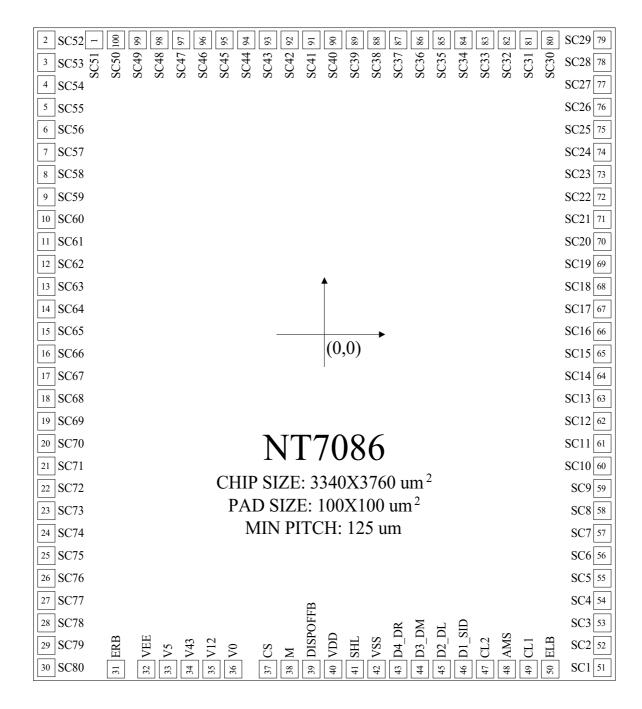
- High voltage CMOS process.
- Available PKG type: bare chip, 100-LQFP

PKG TYPE = 100-LQFP

PKG THICKNESS = 1.40 (+-0.05) mm

PKG SIZE = 14.00 (+-0.10) X 14.00 (+-0.10) mm

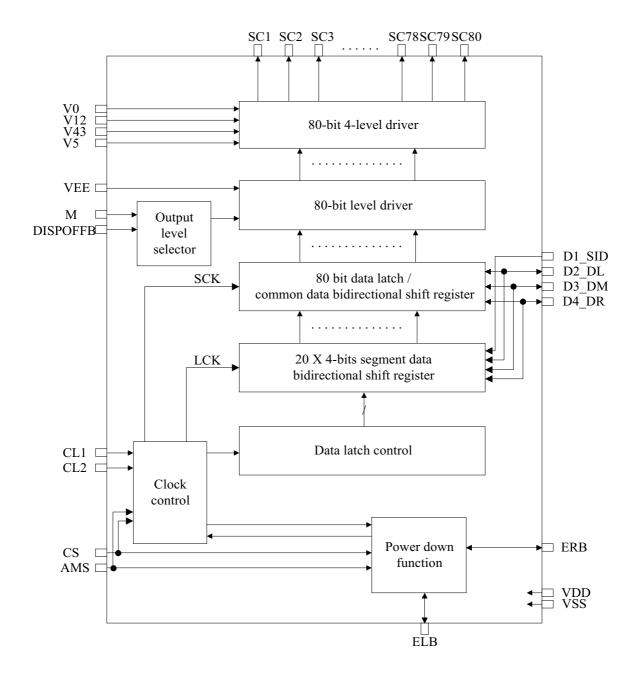
PAD PITCH = 0.5 mm


PAD WIDTH = 0.20 (+0.07, -0.03) mm

PAD LENGTH = 1.0 (+-0.1) mm

PAD DIAGRAM

Note: Please connects the substrate to V_{DD} or Floating



PAD LOCATION

Pad No.	Pad name	X	Y	Pad No.	Pad name	X	Y
1	SC51	-1313.50	1746.00	51	SC1	1542.00	-1754.00
2	SC52	-1544.00	1746.00	52	SC2	A	-1629.00
3	SC53		1621.00	53	SC3		-1504.00
4	SC54		1496.00	54	SC4		-1379.00
5	SC55		1371.00	55	SC5		-1254.00
6	SC56		1246.00	56	SC6		-1129.00
7	SC57		1121.00	57	SC7		-1004.00
8	SC58		996.00	58	SC8		-879.00
9	SC59		871.00	59	SC9		-754.00
10	SC60		746.00	60	SC10		-629.00
11	SC61		621.00	61	SC11		-504.00
12	SC62		496.00	62	SC12		-379.00
13	SC63		371.00	63	SC13		-254.00
14	SC64		246.00	64	SC14		-129.00
15	SC65		121.00	65	SC15		-4.00
16	SC66		-4.00	66	SC16		121.00
17	SC67		-129.00	67	SC17		246.00
18	SC68		-254.00	68	SC18		371.00
19	SC69		-379.00	69	SC19		496.00
20	SC70		-504.00	70	SC20		621.00
21	SC71		-629.00	71	SC21		746.00
22	SC72		-754.00	72	SC22		871.00
23	SC73		-879.00	73	SC23		996.00
24	SC74		-1004.00	74	SC24		1121.00
25	SC75		-1129.00	75	SC25		1246.00
26	SC76		-1254.00	76	SC26		1371.00
27	SC77		-1379.00	77	SC27		1496.00
28	SC78		-1504.00	78	SC28	★	1621.00
29	SC79	▼	-1629.00	79	SC29	1211 50	1746.00
30	SC80	1210 40	-1754.00	80	SC30	1311.50	T
31	ERB	-1218.40		81 82	SC31	1186.50	
33	VEE V5	-1048.70		82	SC32	1061.50	
33	V3 V43	-923.70		84	SC33 SC34	936.50	
35	V43 V12	-798.70 -673.70		85	SC34 SC35	811.50 686.50	
36	V12 V0	-548.70		86	SC36	561.50	
37	CS	-348.70		87	SC37	436.50	
38	M	-255.00		88	SC38	311.50	
39	DISPOFFB	-130.00		89	SC39	186.50	
40	VDD	-5.00		90	SC40	61.50	
41	SHL	120.10		91	SC41	-63.50	
42	VSS	245.10		92	SC42	-188.50	
43	D4 DR	370.10		93	SC43	-313.50	
44	D3 DM	495.10		94	SC44	-438.50	
45	D2 DL	620.10		95	SC45	-563.50	
46	D1_SID	745.10		96	SC46	-688.50	
47	CL2	870.10		97	SC47	-813.50	
48	AMS	995.10		98	SC48	-938.50	
49	CL1	1120.10]	99	SC49	-1063.50	
50	ELB	1245.10	<u> </u>	100	SC50	-1188.50	•

BLOCK DIAGRAM

BLOCK DESCRIPTION

NAME	FUNCTION	COM / SEG
Clock control	Generates latch clock (LCK), shift clock (SCK) and control clock timing according to the input of CL1, CL2 and control inputs (CS, AMS). In common driver application mode, this block generates the shift clock (LCK) for the common data Bi-directional shift register.	COM / SEG
Data latch control	Determines the direction of segment data shift, and input data of each Data latch Bi-directional shift register. In 4-bit segment data parallel transfer mode, data is shifted by a 4-bit unit. In common driver application mode, data is transferred to the common data shift register directly, which disables this block.	SEG
Power down function	Controls the clock enable state of the current driver according to the input value of enable pin (ELB or ERB). If enable input value is "Low", every clock of the current driver is enabled and the clock control block works. But if enable input is "High", current driver is disabled and the input data value has no effect on the output level. So power consumption can be lowered.	SEG
Output level selector	Controls the output voltage level according to the input control pin (M and DISPOFFB) (refer to PIN DESCRIPTION).	COM / SEG
20x4- bitsegment data bi-directional shift register	Stores output data value by shifting the input values. In 1-bit serial interface mode application, all 80 shift clocks (SCK) are needed to store all the display data. But in 4-bit parallel transfer mode application, only 20 clocks are needed. In common driver application mode, this block does not work.	SEG
80-bit data latch / common data bi-directional shift register	In segment driver application mode, the data from the 20x4-bit segment data shift register are latched for segment driver output. In single-type common driver application, 1-bit input data (from DL or DR pin) is shifted and latched by the direction according to the SHL signal input. In dual-type common application mode, 80-bit registers are divided by two blocks and controlled Independently (refer to NOTE 3).	COM / SEG
80-bit level shifter	Voltage level shifter block for high voltage part. The inputs of this block are of logical voltage level and the outputs of this block are at high voltage level value. These values are input in to the driver.	SEG
80-bit 4-level driver	Selects the output voltage level according to M and latched data value. If the data value is "High" the driver output is at selected voltage level (V0 or V5), and in the reverse case the driver output value is at the non-selected level (V12 or V43). In segment driver application mode, non-selected output value is V2 or V3 and when in common driver application, this value becomes V1 or V4.	SEG

PIN DESCRIPTION

PIN	I/O	NAME	FUNCTION	INTERFACE
VDD VSS VEE		Power supply	Logical "High" input port (+5V±10%, +3V± 10%) 0V (GND) Logical "Low" for high voltage part	Power
V0,V12, V43,V5	I	LCD driver output voltage level	Bias supply voltage input to drive the LCD. Bias voltage divided by the resistance is usually used as a supply voltage source (refer to NOTE 2).	Power
SC1~SC80	O	LCD driver output	Display data output pin which corresponds to the respective latch contents. One of V0, V12, V34 and V5 is selected as a display driving voltage source according to the combination of the latched data level and M signal (refer to NOTE 1).	LCD
CL2	I	Data shift clock	Clock pulse input for the bi-directional shift register. In segment driver application mode, the data is shifted to 20 x4-bit segment data shift. The clock pulse, which was input when the enable bit (ELB/ERB) is in not active condition, is invalid. In common driver application mode, the data is shifted to 80-bit common data bidirectional shift register by the CL1 clock. Hence, this clock pin is not used (Open or connect this pin to VDD).	Controller
М	I	AC signal for LCD driver output	Alternate signal input pin for LCD driving. Normal frame inversion signal is input in to this pin.	Controller
CL1	I	Data latch clock	 In segment driver application mode, this signal is used for latching the shift register contents at the falling edge of this clock pulse. CL1 pulse "High" level initializes powerdown function block. In common driver application mode, CL1 is used as a shifting clock of common output data. 	Controller

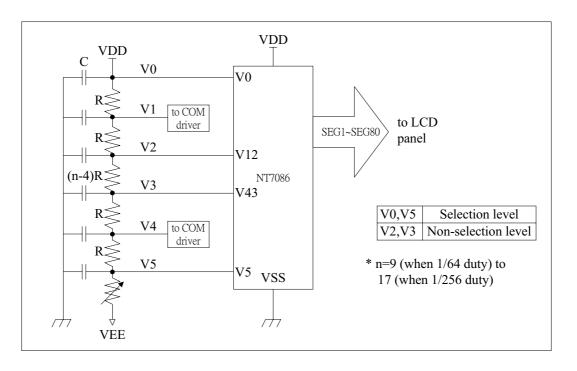
PIN DESCRIPTION (CONTINUED)

PIN	I/O	NAME			INTERFACE		
DISPOFFB	Ι	Display OFF control	(SC1/ input outpu	rol inp ~SC86 . LCD at from	Controller		
CS	I	COM / SEG mode control	Wher bit se Wher	n CS = egment n CS = non dr	VDD/VSS		
AMS	Ι	Application mode select	According to the input value of the AMS and the CS pin, application mode of NT7086 is differs as shown below. CS AMS Application mode COM/SEG 0 0 4-bit parallel interface mode 0 1 1-bit serial interface mode 1 0 Single type application Mode 1 1 Dual type application mode COM 1 1 COM COM 1 1				VDD/VSS
D1_SID, D2_DL, D3_DM, D4_DR	I/O	Display data input/ serial input data/ left, right data input output	-In segment driver mode, these pins are used as 4-bit data input pin (when 4-bit parallel interface mode AMS= "low"), or D1_SID is used as serial data input pin and other pins are not used (connect these to VDD) (when 1-bit serial interface mode AMS= "high")In common driver mode, the data is shifted from D2_DL (D4_DR) to D4_DR (D2_DL), when in single interface mode (AMS= "Low"). In dual-type application case, the data are shifted from D2_DL and D3_DM (D4_DR and D3_DM) to D4_DR(D2_DL). In each case the direction of the data shift and the connection of data pins are determined by SHL input (refer to NOTE 3, NOT 4).				Controller

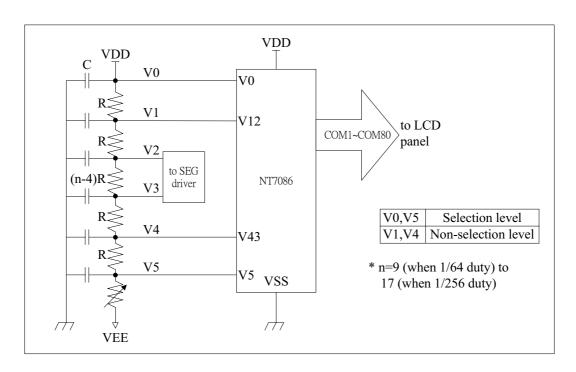
PIN DESCRIPTION (CONTINUED)

PIN	I/O	NAME		INTERFACE		
SHL	I	Shift direction control	When SHL = to right. When SHL = (refer to NOT)			
ELB, ERB	I/O	Enable data	operation is en (ELB or ERB) function). Wh connected, the shifted accord these pins as b	VDD/VSS		
,		output	SHL	Segment driver		
		_	SHL	ELB	ERB	
			L	Output (open)	Input (VSS)	
			H Input (VSS) Output(open)			
			-In common du			

NOTE 1. Output level control


"X": don't care

M	Latched data	DISPOFFB	Output level (CS1~CS80)			
			SEG Mode	COM Mode		
L	L	Н	V12(V2)	V12(V1)		
L	Н	Н	V0	V5		
Н	L	Н	V43(V3)	V43(V4)		
Н	Н	Н	V5	V0		
X	X	L	V0	V0		



NOTE 2. LCD Driving Voltage Application Circuit

(1) Segment driver application (CS = "Low")

(2) Common driver application (CS = "High")

NOTE 3. Data Shift Direction according to Control Signals

(1) When CS = "Low" (segment driver application)

AMS		Application mode	Data Direction	Input pin	
L	L data transf	parallel	S S S S S S S S S S S S S S S S S S S	D1_SID, D2_DL, D3_DM,	
		mode (SEG)	S S S S S S S S S S S S S S S S S S S	D3_DM, D4_DR	
Н	L	L 1-bit serial data transfer	S S S S S S S S S S S S S S S S S S S	D1_SID	
п	Н	Н	mode (SEG)	S S S S S S S S S S S S S S S S S S S	

(2) When CS = "High" (common driver application)

AMS		Application mode	Data Direction	Input pin
	L H	Single-type Application	S S S S C C C C C C C C C T 7 7 8 8 9 0 1 2 3 Shift direction Input data (D2_DL) S S S S S S S S S S S S C C C C C C T 7 7 8 8 9 9 0 1 2 3 Shift direction	D2_DL
L		mode (COM)	S S S S C C C C C C C C C C C C C C C C	D4_DR
11	П	Dual-type Application	Shift direction Shift direction S S S S S S S S S S S S S S S S S S S	D2_DL, D3_DM
Н -		mode (COM)	Shift direction S S S S C C C C C C C C C C C C C C C	D4_DR, D3_DM

NOTE 4. Usage of Data Pins

COM /	Application mode	Application mode Data interface pin						
SEG (CS pin)	(AMS nin)		D1_SID	D2_DL	D3_DM	D4_DR		
SEG	4-bit parallel interface mode (AMS = "Low")	X	D1 (input)	D2 (input)	D3 (input)	D4(input)		
(CS ="Low")	1-bit serial interface mode (AMS = "High")	X	SID	(input)	Connect to V _{DD}			
COM	single-type application mode (AMS = "Low")	L H	open	DL (input) DL (output)	Open	DR (output) DR (input)		
(CS ="High"	dual-type application mode	L H	onon	DL (input1)	DM (input2)	DR (output2)		
)	(AMS = "High")		open	DL (output2)	DM (input2)	DR (input1)		

MAXIMUM ABSOLUTE LIMIT

Characteristic	Symbol	Value	Unit
Power supply voltage	$V_{\scriptscriptstyle m DD}$	-0.3~+7.0	
Driver supply voltage	V_{LCD}	0~+30	V
Input voltage	$ m V_{IN}$	-0.3~V _{DD} +0.3	
Operating temperature	Topr	-30~+85	°C
Storage temperature	Tstg	- 55∼+150	C

 $\ensuremath{\textbf{NOTE:}}$ Voltage greater than above may do damage to the circuit.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

(1) Segment Driver Application

 $(V_{SS} = 0V, Ta = -30 \sim +85^{\circ}C)$

Characteristic	Symbol	Test Conditio	n	Min.	Typ.	Max.	Unit	
Operating	$V_{ m DD}$	$\overline{V_{IN}} = \overline{V_{DD}} - \overline{V_{EE}}$		2.7		5.5		
Voltage 1	V_{LCD}			6	-	28	V	
Input voltage	$ m V_{IH}$	-		$0.8V_{DD}$	-	V_{DD}	V	
(1)	$ m V_{IL}$	-		0	-	$0.2V_{DD}$		
Input voltage	$ m V_{OH}$	I_{CH} =-0.4mA		V_{DD} -0.4	-	-	V	
(2)	$ m V_{OL}$	I_{OH} =-0.4mA	-	-	0.4	V		
Input leakage	ī	$V_{IN}=V_{DD}$ to V_{SS}		-10		10		
current 1 (1)	${ m I}_{{ m IL}1}$	$\mathbf{v}_{\mathrm{IN}} - \mathbf{v}_{\mathrm{DD}}$ to \mathbf{v}_{S}	SS	-10		10	$\mu \mathbf{A}$	
Input leakage	ī	$V_{IN}=V_{DD}$ to V_{F}		-25		25	$\mu \mathbf{A}$	
current 2 (3)	I_{IL2}	V _{IN} -V _{DD} to V _E	EE	-23	-	23		
On resistance(4)	R_{ON}	$I_{on}=100 \mu A$		-	2	4	$\mathbf{k}\Omega$	
	I_{STBY}	f_{CL1} =32kHZ, M=VSS	V_{SS} PIN	-	-	100	$\mu \mathbf{A}$	
Supply			$V_{DD}=5V$	-	-	5	mΛ	
current(5)	I_{DD}	f_{CL1} =32kHZ F_{M} =80HZ	$V_{DD}=3V$	-	-	2	mA	
	$I_{\rm EE}$		$V_{DD}=5V$	-	-	500	μ A	

NOTES:

- 1. Applied to CL1, CL2, ELB, ERB, D1_SID D4_DR, SHL, DISPOFFB, M, CS, AMS pin
- 2. ELB, ERB pin
- 3. V0, V12, V43, V5 pin
- 4. $V_{LCD} = V_{DD} V_{EE}$, $V0 = V_{DD} = 5V$, $V5 = V_{EE} = -23 \text{ V}$ $V12 = V_{DD} 2/n(V_{LCD})$, $V43 = V_{EE} + 2/n(V_{LCD})$, n = 17 (1/256 duty, 1/17 bias)
- 5. $V0 = V_{DD}$, $V12 = 1.71V(V_{DD} = 5V)$ or -0.06V ($V_{DD} = 3V$), V43 = -19.71 V(VDD = 5V) or -19.94V ($V_{DD} = 3V$), $V5 = V_{EE} = -23V$, no-load condition (1/256 duty, 1/17 bias) 4-bit parallel interface mode
- $I_{STBY}\colon V_{DD} = 5V, \ f_{CL2} = 5.12 MHz, \ SHL = V_{SS}, \ DISPOFFB = V_{DD}, \ M = V_{SS}, \ display \ data \ pattern = 0000 MeV_{SS}$
- I_{DD} : V_{DD} = 3V, f_{CL2} = 4MHz, display data pattern = 0101 V_{DD} = 5 V, f_{CL2} = 5.12MHz, display data pattern = 0101
- I_{EE} : $V_{DD} = 5V$, $f_{CL2} = 5.12$ MHz, display data pattern = 0101, V_{EE} pin

DC CHARACTERISTICS (CONTINUED)

(2) Common Driver Application

 $(V_{ss} = 0V, Ta = -30 \sim +85^{\circ}C)$

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Operating	V_{DD}	-	2.7	1	5.5		
Voltage 1	V_{LCD}	$V_{IN} = V_{DD} - V$	6	ı	28	V	
Input voltage	$ m V_{IH}$	-	$0.8V_{DD}$	ı	$V_{\scriptscriptstyle m DD}$	V	
(1)	$ m V_{IL}$	-		0	ı	$0.2V_{DD}$	
Input voltage	V_{OH}	I_{CH} =-0.4m	V_{DD} -0.4	ı	-	V	
(3)	V_{OL}	I_{OH} =-0.4m	-	ı	0.4	V	
Input leakage current 1 (1)	$I_{_{\rm IL1}}$	$V_{IN} = V_{DD}$ to	-10	1	10	,, A	
Input leakage current 2 (2)	I_{IL2}	$V_{IN}=0V, V_{DD}=5V($	-50	-125	-250	μ A	
Input leakage current 3 (4)	I_{IL3}	$V_{\rm IN} = V_{\rm DD}$ to $V_{\rm IN}$	-25	1	25		
On resistance(5)	R_{ON}	$I_{on}=100 \mu A$		-	2	4	$\mathbf{k}\Omega$
	I_{STBY}	f _{CL1} =32kHZ, M=VSS	V _{SS} PIN	-	1	100	
Supply	т	f_{CLI} =32kHZ F_{M} =80HZ	$V_{DD} = 5V$	-	-	200	., Δ
current(6)			$V_{DD}=3V$	-	ı	120	$\mu \mathbf{A}$
	I_{EE}		$V_{DD}=5V$	-	-	150	

NOTES:

- 1. Applied to CL1, D2 DL (SHL = LOW), D4 DR (SHL = HIGH), SHL, DISPOFFB, M, CS, AMS pin
- 2. Pull-up input pins: CL2, D1 SID, D3 DM (AMS = HIGH), ELB (SHL = LOW), ERB (SHL = HIGH)
- 3. D2 DL (SHL = HIGH), D4 DR (SHL = LOW) pin
- 4. V0, V12, V43, V5 pin
- 5. $V_{LCD} = V_{DD} V_{EE}$, $V0 = V_{DD} = 5V$, $V5 = V_{EE} = -23V$
- $V12 = V_{DD}-1/n(V_{LCD}), V43 = V_{EE}+1/n(V_{LCD}), n = 17(1/256 \text{ duty}, 1/17 \text{ bias})$
- 6. $V0 = V_{DD}$, V12 = 3.35V ($V_{DD} = 5V$) or 1.47V ($V_{DD} = 3V$),
- V43 = -21.35V ($V_{DD} = 5$ V) or -21.47V ($V_{DD} = 3$ V), $V5 = V_{EE} = -23$ V, no-load condition (1/256 duty, 1/17 bias)

single-type mode operation : AMS = V_{SS} , SHL = V_{SS} , DISPOFFB = V_{DD}

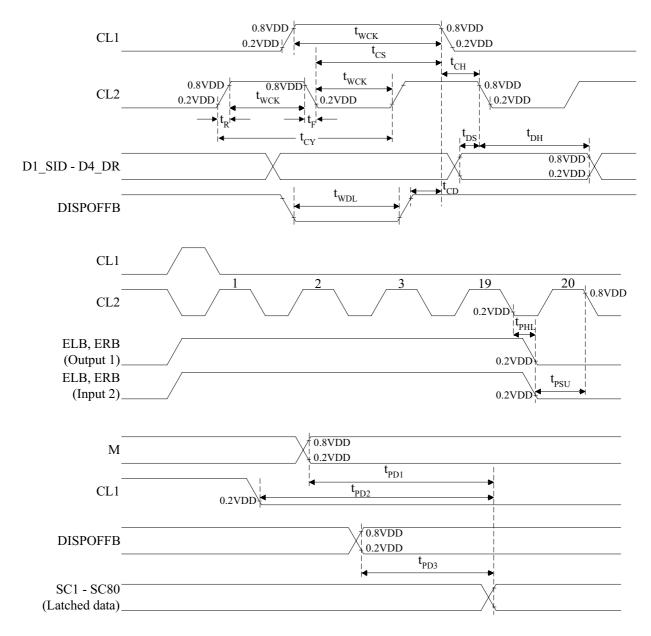
- D1_SID = D3_DM = VDD, D4_DR = OPEN, ELB = ERB = OPEN,
- $I_{STBY} : V_{DD} = 5V, M = V_{SS}, D2_DL = V_{SS}$
- I_{DD} : $f_{M} = 80$ Hz, $D2_{DL} = V_{DD}$
- $V_{DD} = 3 \text{ V}$, display data pattern = 10000000..., 01000000..., 00100000..., 00010000..., ...
- $V_{DD} = 5 \text{ V}$, display data pattern = 10000000..., 01000000..., 00100000..., 00010000..., ...
- I_{EE} : $f_{M} = 80$ Hz, $D2_{DL} = V_{DD}$
- V_{DD} = 5V, current through V_{EE} Pin, display data pattern = 10000000..., 01000000..., 00100000...

AC CHARACTERISTICS

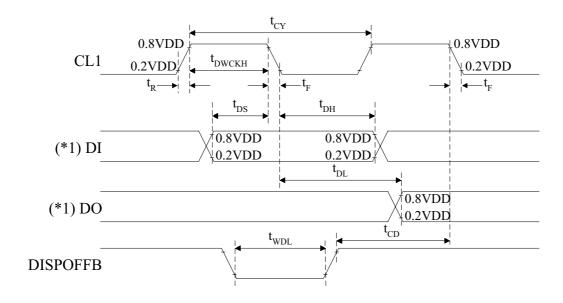
(1) Segment Driver Application

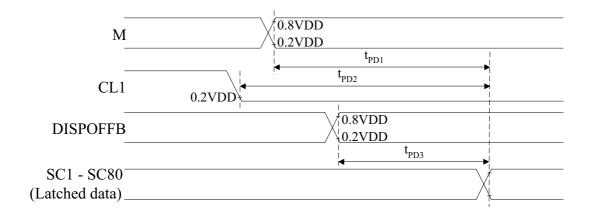
 $(V_{SS} = 0V, Ta = -30 \sim +85^{\circ}C)$

Characteristic	Symbol	Tost condition	(1) VDD=5V±10% (2) VDD=3V±10%						Unit
Characteristic		Test condition	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
Clock cycle time	t_{CY}	Duty=50%	125	ı	-	250	ı	-	
Clock pulse width	t_{WCK}	1	45	1	-	95	1	-	
Clock rise/ fall time	$t_{\rm R}/t_{\rm F}$	1	-	1	-	•	1	30	
Data set-up time	t_{DS}	ı	30	-		65	-	-	
Data hold time	$t_{ m DH}$	ı	30	ı		65	ı	-	
Clock set-up time	t_{CS}	-	80	-		120	-	-	ns
Clock hold time	t_{CH}	-	80	-		120	-	-	
Dramagation dalary time	$t_{ m PHL}$	ELB output		-	60	_	_	125	
Propagation delay time		ERB output	-		60			125	
ELD EDD act un time	t_{PSU}	ELB input	30	1	-	65		-	
ELB,ERB set-up time		ERB input	30			65	_		
DISPOFFB low pulse width	$t_{ m WDL}$	-	1.2	-	-	1.2	-	-	μ s
DISPOFFB clear time	t_{CD}	-	100	-	-	100	-	-	ns
M - OUT					1.0	-		1.2	
propagation delay time t _{PD1}			-	ı	1.0	ı	_	1.2	
CL1 – OUT	+	C -15pF			1.0			1.2	11.5
propagation delay time t _{PD2}		$C_L=15pF$	-	•	1.0	_	_	1.2	μ s
DISPOFFB – OUT			-	1	1.0	-	-	-	
propagation delay time t _{PD3}									


(2) Common Driver Application

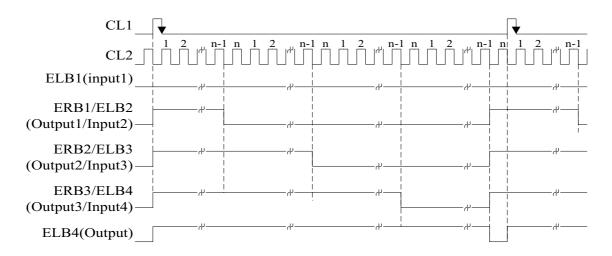
 $(V_{ss} = 0V, Ta = -30 \sim +85^{\circ}C)$


						55	·, ·u			
Characteristic	Symbol	Test condition	(1) VI	D=5V	±10%	$(2) VDD=3V\pm10\%$			Unit	
Characteristic		Test condition	Min.	Typ.	Max.	Min.	Typ.	Max.	Omi	
Clock cycle time	t_{CY}	Duty=50%	250	1	-	500	-	-		
Clock pulse width	t_{WCK}	ı	45	1	-	95	-	-		
Clock rise/ fall time	$t_{\rm R}/t_{\rm F}$	ı	-	1	50	1	-	50	ns	
Data set-up time	t_{DS}	-	30	1		65	-	-		
Data hold time	T_{DH}	-	30	-		65	-	-		
DISPOFFB low pulse			1.2			1.2			44.0	
width	$t_{ m WDL}$	-	1.2	-	-	1.2	_	_	μ s	
DISPOFFB clear time	t_{CD}	-	100	-	-	100	-	-	na	
Output delay time	$t_{ m DL}$		-	-	200	-	-	250	ns	
M – OUT	4				1.0			1.2		
propagation delay time	t_{PD1}		-	-	1.0	_	_	1.2		
CL1 – OUT	4	$C_L=15pF$			1.0			1.2	44.0	
propagation delay time	t_{PD2}		ı	-	1.0	_		1.2	μ s	
DISPOFFB – OUT	+		-	-	1.0	-	-	1.2		
propagation delay time	t_{PD3}									


(3) Segment Driver Application Timing

(4) Common Driver Application Timing

(*1) When in single-type interface mode
DI=>DDL(SHL=L), D4_DR(SHL=H)
DO=>D4_DR(SHL=L), D2_DL(SHL=H)
When in dual-type interface mode
DI=>D2_DL and D3_DM(SHL=L), D4_DR and D3_DM(SHL=H)
DO=>D4_DR(SHL=L), D2_DL(SHL=H)



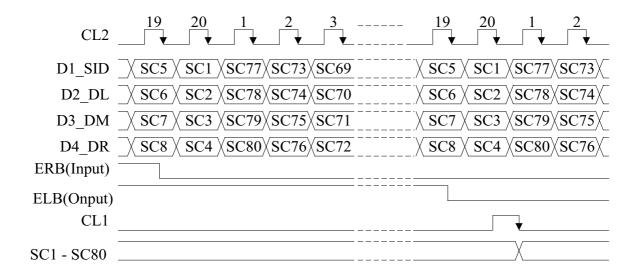
POWER DOWN FUNCTION

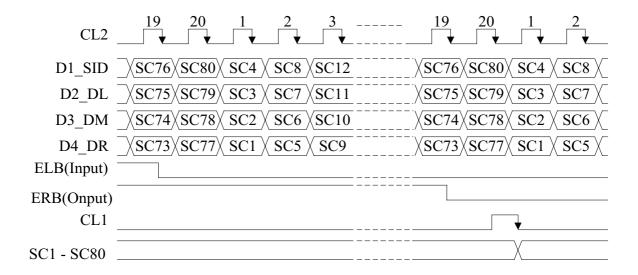
In the case of cascade connection of segment mode drivers, NT7086 has a "power down function" In order to reduce the power consumption.

SHL	Enable input	Enable output	Current driver status	The other drivers status
L	ERB	ELB	While ERB ="Low", current driver is enabled.	Disabled
Н	ELB	ERB	While ELB ="Low", current driver is enabled.	Disabled

^{*} In the case of common driver application, power down function does not work.

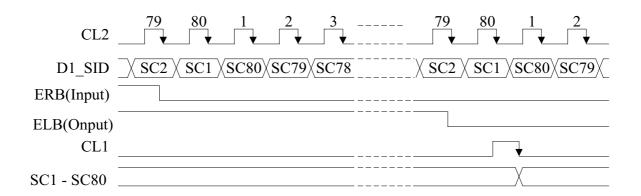
NOTES:

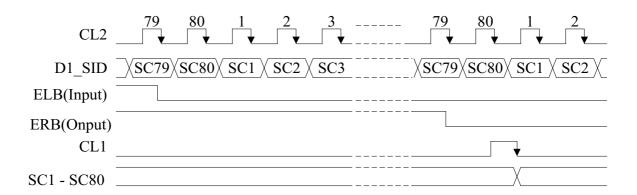

- 1. SHL = High (ELB = Input, ERB = Output)
- 2. When in 4-bit parallel interface mode: n = 20When in 1-bit serial interface mode: n = 80


OPERATION TIMING DIAGRAM

(1) 4-bit parallel mode interface segment driver

When SHL= "Low"

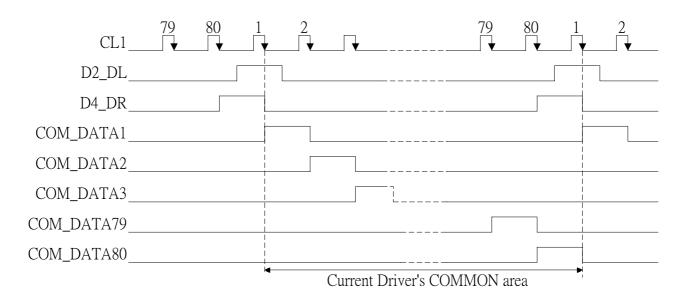

When SHL= "High"



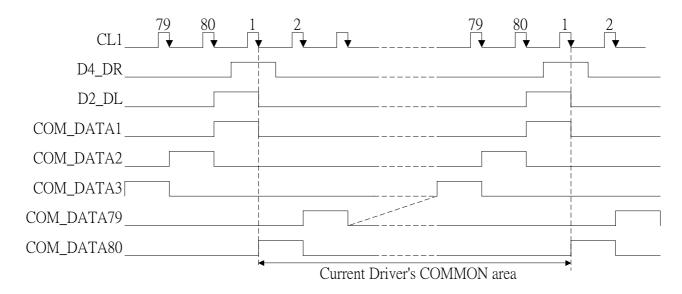
(2) 1-bit serial mode interface segment driver

When SHL= "Low"

When SHL= "High"

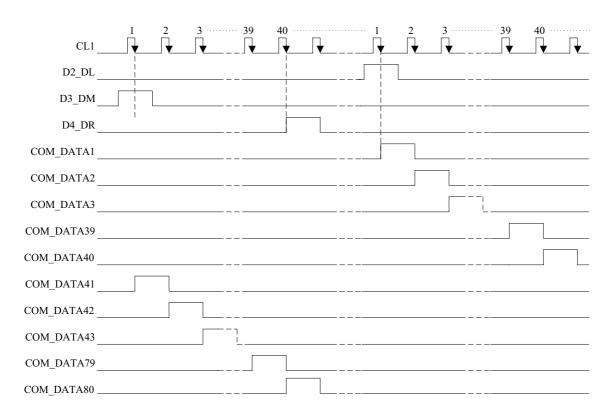


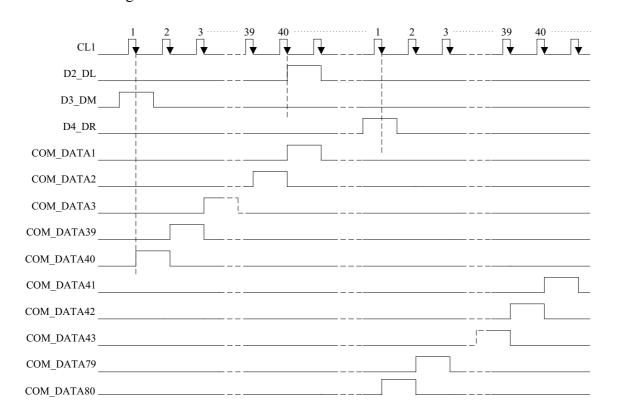
7/24/2002 22/31 **E**



(3) Single type interface mode common driver

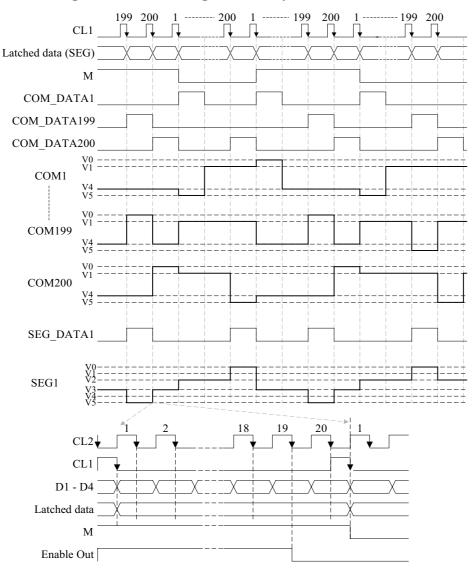
When SHL= "Low"


When SHL= "High"



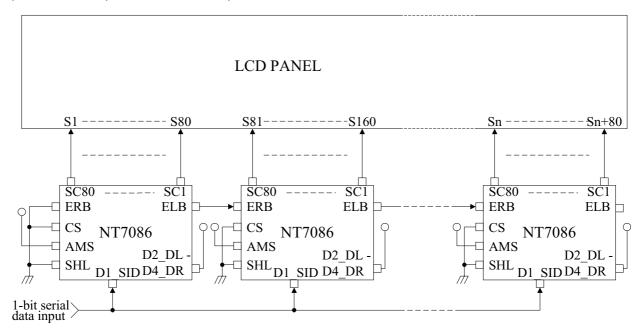
(4) Dual-type interface mode common driver

When SHL= "Low"



When SHL= "High"

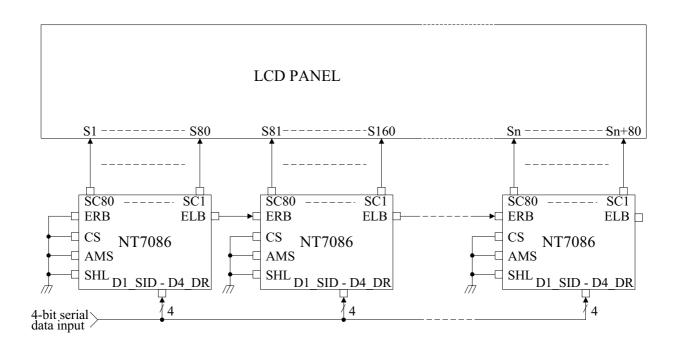
(5) Common / Segment driver timing (1/200 duty)

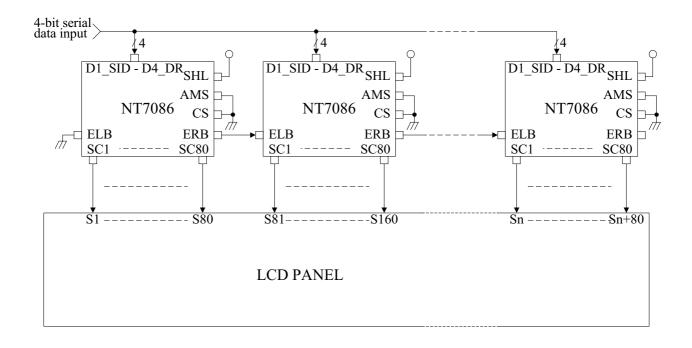


APPLICATION INFORMATION

1-bit serial interface mode (80 Ch. Segment mode)

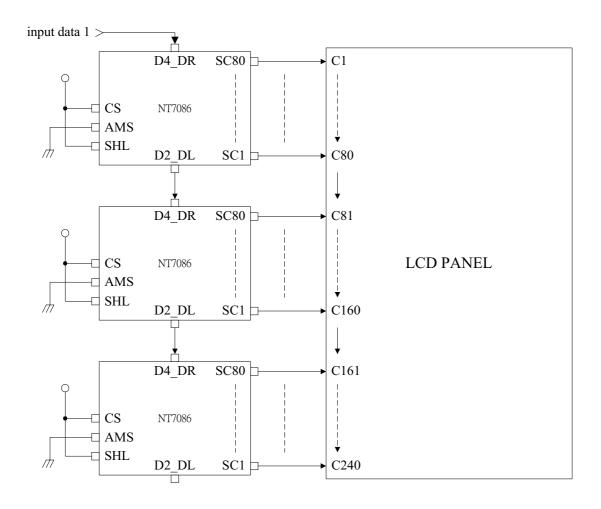
a) Lower view (SHL= L, AMS= H)


b) Upper view (SHL= H, AMS= H)

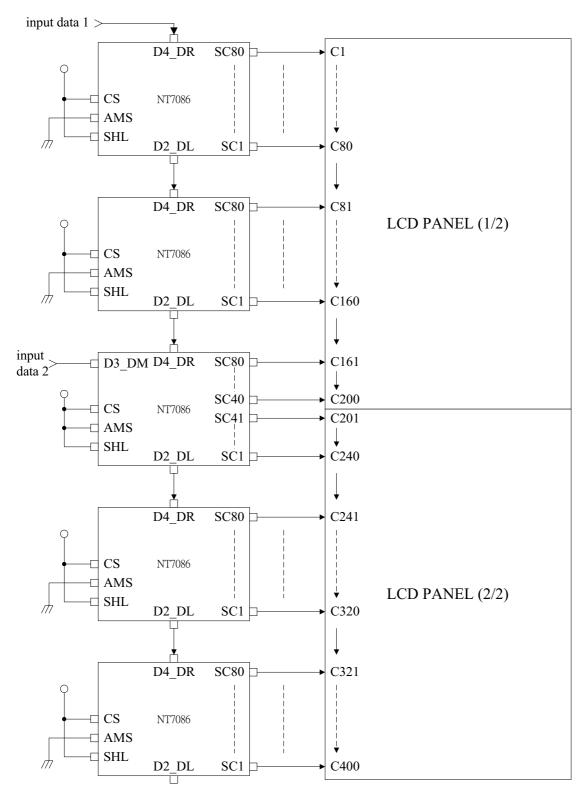


4-bit parallel interface mode (80 Ch. Segment driver)

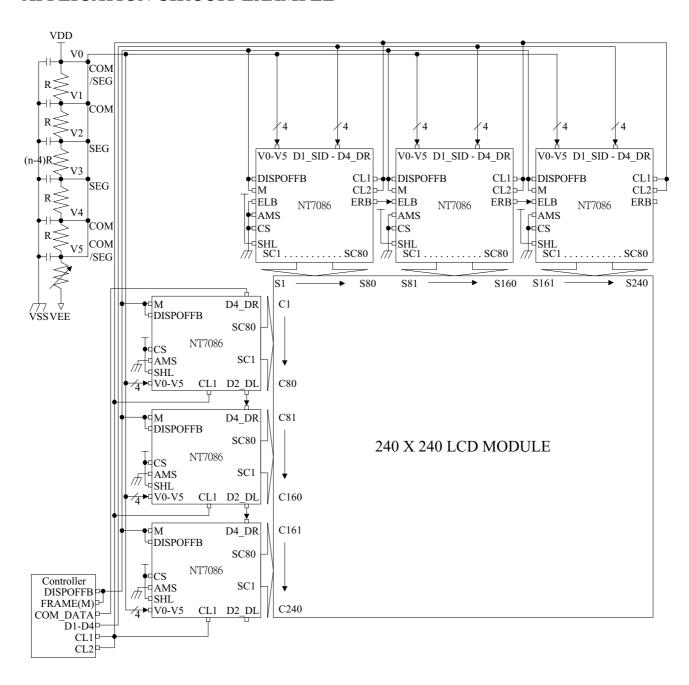
a) Lower view (SHL= L, AMS = L)



b) Upper view (SHL= H, AMS = L)



Single type interface mode (80 Ch. Common driver)



Dual-type interface mode (40 Ch. + 40Ch. Common driver)

NOTE: Using this application mode (dual-type common mode), the duty ratio can be reduced to half. In case, 1/200 duty can be used to driver the 400 common LCD panel.

APPLICATION CIRCUIT EXAMPLE

Date Description

6/5/2002 7/24/2002 Add the notice of substrate connection.
 Page 3 add the LQFP PKG description.